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High Temperature Transport Properties of Dilute
Nitrogen Atoms1

L. Biolsi2,3 and P. M. Holland4

Calculations of the transport coefficients viscosity and thermal conductivity
and the diffusion collision cross section of nitrogen atoms have been car-
ried out as a function of temperature. The dilute gas transport properties of
nitrogen atoms depend only on the interactions between two nitrogen atoms
along various electronic potential energy curves. The results presented here
include contributions from 16 potential energy curves, four of which disso-
ciate to two ground-state nitrogen atoms with the others also dissociating
to two nitrogen atoms, at least one of which is in an excited electronic
state. Thirteen of the potential energy curves are represented by the Hulburt–
Hirschfeleder potential which is the best general purpose atom–atom poten-
tial. This potential depends only on the experimental spectroscopic constants
and not on any adjustable parameters. Where spectroscopic constants are
unavailable, fits of the Hulburt–Hirschfelder potential to ab initio quantum
mechanical results are used for two states and a fit of the Morse potential
is used for the other state. The results presented here should be especially
useful under conditions where nitrogen atoms are at high temperatures, such
as during Space Shuttle re-entry.
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1. INTRODUCTION

The theromophysical properties of nitrogen (N) atoms are important in
air at high temperatures, in the chemistry and physics of the upper
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atmosphere [1], and in a variety of applications [2–4]. Experimental ther-
mophysical property data are sparse [5–9] for N atoms because of the
high temperatures required. Thus, theory is usually relied on to calculate
thermophysical properties of N atoms. In this paper, the viscosity, ther-
mal conductivity, and diffusion of N atoms are obtained using the kinetic
theory of gases. The transport properties are the viscosity [10], η;

η(µPa · s)=2.669

√
MT

σ 2Ω(2,2)∗ (1)

the diffusion coefficient [10], D;

D(m2 · s−1)=2.594×10−7

√
T 3/M

pσ 2Ω(1,1)∗ , (2)

the translational contribution to the thermal conductivity [10], λtr;

λtr(W · m−1 · K−1)=8.322×10−2
√

T/M

σ 2Ω(2,2)∗ (3)

and the internal contribution to the thermal conductivity [11,12], λint;

λint(W · m−1 · K−1)=1.203x104 pD

T
(Cp −20.786) (4)

where T is the temperature in K, M is the molecular weight in g ·mol−1, p

is the pressure in bar, Cp is the molar heat capacity at constant pressure in
J ·mol−1 ·K−1, and σ 2Ω(1,1)∗ and σ 2Ω(2,2)∗ are the diffusion and viscosity
collision integrals in 10−20 m2, respectively, determined by the interaction
between two N atoms as they “follow” a particular electronic potential
energy curve. Equation (4) is valid subject to the assumption that the
transport of internal energy is due only to a diffusion mechanism [11, 12].

2. INTERACTION POTENTIALS

When two ground-state (4S) N atoms interact, they can follow [13]
any of four electronic potential–energy curves corresponding to an N2
molecule; the electronic states are the ground X1Σ+

g state and the excited
A3Σ+

u , 5Σ+
g , and 7Σ+

u states. Spectroscopic information [14] and quan-
tum mechanical calculations [15, 16] indicate that these four states are all
bound although the latter two states have very small well depths (dissoci-
ation energies).

At high temperatures, one or both of the interacting N atoms may
be in an excited state and these should be included in the calculations.
The excited states of N included in these calculations are the 2D and
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Table I. Electronic States of N2

Statea Potential Used Dissociated N Atomsb

X1Σ+
g HH 4S + 4S

A3Σ+
u HH 4S + 4S

B3Πg HH 4S + 2D
W3∆u HH 4S + 2D
B′3Σ−

u HH 4S + 2P
a′1Σ−

u HH 2D + 2D
a1Πg HH 2D + 2D
w1∆u HH 2D + 2D
5Σ+

g KN 4S + 4S
7Σ+

u FS 4S + 4S
G3∆g HH 4S + 2D
C3Πu HH 4S + 2D
yE3Σ+

g MP 4S + 2D
C′3Πu HH 4S + 2D
b′1Σ+

u HH 2D + 2P
H3�u HH 2D + 2D

aThe states are listed in order of the bottom of the
potential energy well for each state relative to the
bottom of the potential energy well for the ground
state; usually denoted as Te by spectroscopists [14].
bThe dissociation products are mostly from Ref. 26.

2P states. Sixteen bound electronic states of N2 that dissociate to one or
more ground or excited atomic states are included in the calculations and
listed in Table I. Thirteen of the electronic states have been represented
by the Hulburt–Hirschfelder (HH) potential (see column 2 of Table I).
This potential has been discussed in detail elsewhere [17–20]. It depends
only on the experimental vibrational–rotational spectroscopic constants for
the given electronic state and not on any adjustable parameters. It is the
best available general purpose potential for representing atom–atom inter-
actions with an attractive minimum in the potential [21–25], and it usually
gives excellent agreement with experimental Rydberg–Klein–Rees (RKR)
potential energy curves for atom–atom and atom–ion interactions [21, 23,
26–28]. It also often reproduces the local maxima sometimes found at
larger interatomic separations [29–33].

The theoretical electronic potential–energy curves of Krauss and
Neumann [15] for the 5Σ+

g state and of Ferrante and Stwalley [16] for the
7Σ+

u state were carefully fit with the HH potential. This is described in
detail in Ref. 20. The resulting fits are referred to as KN and FS, respec-
tively, in Table I. Since some spectroscopic constants are not known for
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the E3Σ+
g state, it was fit with a Morse potential (MP in Table I). More

details about the potentials and the spectroscopic parameters for the 16
states are given in Ref. [34]. These particular states have been chosen since
good quality potential-energy curves are available, leading to good quality
transport cross sections.

2.1. Averaged Collision Integrals

When two or more states contribute to the collision integrals, the
contributions from each state must be averaged. Using the notation of
Ref. [35], the averaged values are given by

∑

k

αij,kσ
2
ij,kΩ

(	,s)∗
ij,k ,

where k represents the sum over the electronic states and i and j repre-
sent the two interacting species (N atoms in this case). The symbol αij,k

represents the probability associated with each electronic state which is the
degeneracy of each state divided by the total degeneracy of the electronic
states that dissociate to the same atoms [35–37], which is designated as
ωij,k. As an example, for the singlet, triplet, quintet, and septet states that
dissociate to ground state N atoms, the degeneracies are 1, 3, 5, and 7,
respectively, and the ωij,k are 1/16, 3/16, 5/16, and 7/16, respectively.

However, the probability must also account for the fact that atoms
in excited electronic states are less likely than ground-state atoms at a
particular temperature. Here, we assume the interacting atoms are at
local equilibrium which is reasonable since the transport properties are
near-equilibrium properties, i.e., the gradients in composition, energy, and
momentum are small. The temperature-dependent probability of occupa-
tion of the states is given by the Boltzmann factor and

αij,k =ωij,ke
−Eij /kT ,

where Eij is the energy of separated atoms i and j , relative to the ground
state 4S atoms as the zero of energy.

For potential–energy curves associated with one or two excited state
atoms, the list of states in Table I is incomplete because the required spec-
troscopic information and/or theoretical calculations for the state are not
available. For instance, when 4S and 2D nitrogen atoms collide, they can
follow the following six pairs of potential energy curves [30, 36]; 3Σg,u,
5Σg,u, 3Πg,u, 5Πg,u, 3∆g,u, and 5∆g,u where the symbols g and u represent
gerade and ungerade, respectively, and denote the symmetry of the wave
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function upon interchanging the nuclei. Each Σ state has a degeneracy of
3 or 5, and each Π and ∆ state has a degeneracy of 6 or 10. The total
degeneracy is 80. Thus, the 3Σg state has a probability of 3/80, the 5∆u
state has a probability of 10/80, etc. Table I shows that only 6 of the 12
states are included in this calculation due to the lack of the required infor-
mation. The cross section for each state is multiplied by its appropriate
probability for these calculations. When information becomes available to
permit good quality calculations for the six missing states, their contribu-
tion to the collision integrals can be included without redoing these cal-
culations. A similar approach is used for the other potential energy curves
associated with N atoms in various states.

The degeneracy averaged viscosity collision integrals, σ 2Ω(2,2)∗, are
given in the second column of Table II as a function of temperature. The
results are similar to those obtained previously [20]. For instance, when
only the four molecular states dissociating to ground state atoms were con-
sidered, the viscosity collision integral at 10,000 K was 3.8943, about 2%
less than the present result. This is reasonable. The viscosity collision inte-
gral is related to the probability of a collision, and this should increase as
atoms in excited states are allowed to collide. However, since the popula-
tions of the excited states are small (recall that few atoms are electronically
excited even at 10,000 K [38]), the number of collisions increases by only
a small amount at 10,000 K. The results show that, at 1000 K, the percent
increase is smaller and, at 20,000 K, the percent increase is larger.

Again, there are other interactions that dissociate to the atomic states
included in these calculations but they have not been included since infor-
mation required to calculate good quality collision cross sections is not
available. Although inclusion of these states would increase the cross sec-
tions, the increase will be small. Thus, the usual conclusion [39] that the
consideration of excited states only changes the transport properties by a
small amount is demonstrated by these quantitative calculations.

2.2. Excitation Exchange Collision Integrals

Calculation of the diffusion coefficients is more complicated. When
the dissociation products are in different states, e.g., dissociation to N
atoms in the 4S and 2D states, it is actually the cross section for excitation
exchange that determines σ 2Ω(	,s)∗ for odd 	 [35], e.g., the diffusion colli-
sion integral, σ 2Ω(1,1)∗. The excitation exchange process is for the reaction,

N+N∗ →N∗ +N.
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Table II. Thermophysical Properties of N Atoms

T (K) σ 2Ω(2,2)∗(10−20 m2) η(µPa · s) λtr(mW ·m−1 ·K−1)

1000 7.2745 43.42 96.68
2000 5.9962 74.49 165.9
3000 5.3798 101.7 226.4
4000 4.9817 126.8 282.3
5000 4.7270 149.4 332.7
6000 4.4956 172.1 383.2
7000 4.3338 192.8 429.3
8000 4.2064 212.4 472.9
9000 4.1021 231.0 514.3

10000 4.0126 248.9 554.2
11000 3.9354 266.2 592.7
12000 3.8679 282.9 629.8
13000 3.8059 299.2 666.2
14000 3.7492 315.2 701.8
15000 3.6975 330.8 736.6
16000 3.6502 346.1 770.7
17000 3.6058 361.2 804.2
18000 3.5645 375.9 837.1
19000 3.5269 390.3 869.2
20000 3.4884 404.9 901.6

The third column of Table I shows that excitation exchange domi-
nates the diffusion process for half the interaction potential energy curves
included in our calculations.

This excitation exchange process is discussed in some detail for inter-
acting N atoms in Ref. 36. Crude approximations to the g,u potential
energy curves were obtained using the Heitler–London approximation, and
excitation exchange cross sections for the 4S + 2D and the 4S + 2P inter-
actions were given, respectively, in Tables I and II of Ref. 36 at 10,000 K.

Results for the degeneracy averaged diffusion collision integrals calcu-
lated here (without including the Boltzmann factor) at 10,000 K are shown
for the five different dissociation products in the second column of Table III,
and the results for the excitation cross sections from Ref. 36 are shown
in the third column (they did not calculate an excitation cross section for
the 2D + 2P dissociation products). The comparison is not quite fair since
Nyeland and Mason [36] included (crudely) a contribution from all states
and this work includes only half the states. However, almost all of the
individual collision integrals calculated here lie between 1 and 10 (most
between 3 and 7). If reliable potentials were available for the six states
that dissociate to 4S + 2D atoms and that have not been included in these
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Table III. Diffusion Collision Integrals for N Atoms, σ 2Ω(1,1)∗ (10−20 m2 ), at 10,000 K

Dissociation Products This Work Excitation Exchange “Adjusted”

4S + 4S 3.4586
4S + 2D 1.3498 8.12 3.2723
4S + 2P 0.4010 14.78 6.4161
2D + 2D 0.5475
2D + 2P 0.0527

calculations, the diffusion collision integrals would be similar to those we
did calculate. Thus, in the fourth column of Table III, the collision integrals
for the states included in this work that undergo excitation exchange have
been adjusted as if they included all the states, e.g., the total degeneracy
of the eight molecular states of N2 that dissociate to 4S + 2P atoms is 48.
However, only the B′3Σ−

u state has been included in this calculation with
a degeneracy averaged contribution of 3/48. Thus, in the fourth column of
Table III, the degeneracy averaged diffusion cross section has been multi-
plied by 48/3 to force the fractional degeneracies to add to unity. A similar
calculation has been done for the 4S + 2D cross sections. A comparison
between the third and fourth columns in Table III is more reasonable.

3. TRANSPORT PROPERTIES

The viscosity and the translational contribution to the thermal con-
ductivity are given in the third and fourth columns of Table II, respec-
tively. As expected from the discussion of the collision integrals, the results
are very similar to those obtained when only the states dissociating to
ground-state atoms were considered [20] since the contribution of excited
states is limited. The differences are insignificant at 1000 K and 10% at
20,000 K, as expected, since excited state contributions are larger at high
temperatures, e.g., Table IV shows the contribution of each state to the
total degeneracy averaged viscosity collision integral at three tempera-
tures. The contribution from molecular states that dissociate to one or two
excited states atoms is small even at 10,000 K and becomes significant only
at higher temperatures.

4. DISCUSSION AND CONCLUSIONS

Yun and Mason [40] also considered states that dissociate to ground-
state atoms, representing the singlet and triplet states with a potential of
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Table IV. Contribution to the Degeneracy Averaged Viscosity Col-
lision Integral, σ 2Ω(2,2)∗ (10−20 m2), of N Atoms as a Function of

Temperature

State 1000 K 10,000 K 20,000 K

X1Σ+
g 0.6468 0.3430 0.2819

A3Σ+
u 1.6399 0.8702 0.6273

B3Πg 0.0214 0.0662
W3∆u 0.0279 0.0819
B′3Σ−

u 0.0062 0.0369
a′1Σ−

u 0.0003 0.0036
a1Πg 0.0005 0.0060
w1∆u 0.0005 0.0062
5Σ+

g 1.5992 0.6507 0.5501
7Σ+

u 3.3886 2.0507 1.6960
G3∆g 0.0205 0.0495
C3Πu 0.0075 0.0258
E3Σ+

g 0.0030 0.0106
C′3Πu 0.0094 0.0360
b′1Σ+

u 0.0001 0.0010
H3�u 0.0009 0.0094

Contributions to the viscosity collision integral less than 10−24 m2

are not included in the table.

the form −C/rn where r is the separation of the atoms and C and n are
adjustable parameters, the quintet state with the exponential-6 potential,
and the septet state with the exponential-repulsive potential. Their results,
using somewhat less accurate potentials than those used in Ref. 20 and
here, were somewhat lower than the results in Ref. 20 (see Table VII) and
3% lower than these results at 1000 K and 13% lower at 15,000 K. Capi-
telli and Devoto [37] also considered states that dissociate to ground-state
atoms. They represented the singlet, triplet, and quintet states with the
Morse potential and the septet state with the exponential-repulsive poten-
tial. Their results, also involving less accurate potentials that those used in
Ref. 20 and here, were similar to the results in Ref. 20 (see Table VII) and
are 2% higher than these results at 5000 K and 13% lower at 20,000 K.
The small differences at low temperatures are due to the different repre-
sentation of potentials for the molecular states that dissociate to ground-
state atoms. The larger differences at higher temperatures are due to the
inclusion of molecular states that dissociate to excited state atoms consid-
ered in this work and not in previous work.

Thus, there is reason to believe that there is little error in these results
for molecular states that dissociate to ground-state atoms. However, for
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Table V. Degeneracy Averaged Diffusion Collision Integrals for N Atoms

T (K) σ 2Ω(1,1)∗ (10−20 m2) T (K) σ 2Ω(1,1)∗ (10−20 m2)

1000 6.4956 11000 3.4693
2000 5.4000 12000 3.3973
3000 4.8599 13000 3.3313
4000 4.5060 14000 3.2707
5000 4.2484 15000 3.2164
6000 4.0486 16000 3.1664
7000 3.8874 17000 3.1202
8000 3.7563 18000 3.0775
9000 3.6468 19000 3.0373

10000 3.5520 20000 2.9997

molecular states that dissociate to one or two excited state atoms, accu-
rate potentials are available for less than half the states. At 20,000 K, the
contributions of the five sets of dissociation products to the viscosity cross
section are 3.1553 (4S + 4S), 0.2700 (4S + 2D), 0.0369 (4S + 2P), 0.0252
(2D + 2D), and 0.0010 (2D + 2P). Thus, the states dissociating to 4S + 2D
atoms provide over 80% of the contribution from excited states, leading to
results presented here that are roughly 10% higher than previous results
[20, 36, 37]. Since only half the states have been considered in this 4S +
2D calculation, it is reasonable to expect that the true viscosity collision
integral at 20,000 K is about 10% higher than the result reported here with
smaller discrepancies at lower temperatures.

The degeneracy averaged diffusion integral obtained at 10,000 K from
the second column in Table III is 3.5520, the result obtained using the
charge exchange cross sections in the third column is 4.2049, and the
result obtained using the adjusted diffusion cross section in the fourth col-
umn is 3.7688. The 2D + 2P dissociation products have been excluded
since the population of these dissociation products is very small and an
excitation exchange cross section is not available for these states. The
differences are significant, a 10% difference between the last two results
which is a first approximation to the effect of charge exchange. Of course,
if fewer molecular states dissociate to atoms in different states, the charge
exchange effect is smaller and vice versa.

Thus, the excitation exchange cross sections should be used to cal-
culate diffusion coefficients and, since they have only been calculated at
10,000 K using crude potentials, the diffusion coefficients are not calcu-
lated here. The diffusion collision integrals calculated without including
excitation exchange are given in Table V but they would be larger if exci-
tation exchange was included. Diffusion coefficients calculated using these
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collision integrals are an upper limit for the contribution to diffusion from
these states.

The contribution of excitation exchange to the transport collision
integrals calculated here is relatively small at these temperatures but it is
not small for λint. Since the assumption has been made that the interac-
tions are adiabatic, i.e., they occur along only a single potential energy
curve, the only mechanism available for energy exchange is the excitation
exchange process. Nyeland and Mason [36] considered the effect of exci-
tation exchange on λint due to the 4S + 2D and 4S + 2P interactions
between nitrogen atoms and found that λ is increased by a factor of 1.16
relative to λtr (compared to an incorrect increase by a factor of 1.40 if the
erroneously small diffusion cross sections are used in place of the excita-
tion exchange cross sections); the difference is 17%.

Nyeland and Mason showed [36] that, using an impact parameter
approximation, it is the difference in energy between the g,u potentials
that determines the excitation exchange cross section. Table I shows that
excellent potentials are available for the g,u pairs W3∆u; G3∆g and B3Πg;
C3Πu. We are currently doing calculations on these pairs to determine
how well the results agree with those of Nyeland and Mason [36] and to
determine if the approximations they made that required them to make
only a single Heitler–London calculation are reasonable.

Many other interactions are required to determine the transport
properties of air. This is discussed in detail in Ref. 41.
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